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Abstract: Conversational large language models (LLMs) such as ChatGPT and GPT-4 have recently exhibited remarkable capabilit-
ies across various domains, capturing widespread attention from the public. To facilitate this line of research, in this paper, we report the
development of MOSS, an open-sourced conversational LLM that contains 16 B parameters and can perform a variety of instructions in
multi-turn interactions with humans. The base model of MOSS is pre-trained on large-scale unlabeled English, Chinese, and code data.
To optimize the model for dialogue, we generate 1.1 M synthetic conversations based on user prompts collected through our earlier ver-
sions of the model API. We then perform preference-aware training on preference data annotated from Al feedback. Evaluation results
on real-world use cases and academic benchmarks demonstrate the effectiveness of the proposed approaches. In addition, we present an
effective practice to augment MOSS with several external tools. Through the development of MOSS, we have established a complete
technical roadmap for large language models from pre-training, supervised fine-tuning to alignment, verifying the feasibility of chatG-
PT under resource-limited conditions and providing a reference for both the academic and industrial communities. Model weights and
code are publicly available at https://github.com/OpenMOSS/MOSS.
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1 Introduction

Large language models (LLMs)[l have demonstrated
unprecedented capabilities on a variety of language tasks,
such as GPT-32, Gopherl3l, PaLM(, Chinchillal’l, GLM-
130BIl6], LLaMAI7, and GPT-4[8]. After aligning with hu-
man preferences, these LLMs can serve as capable Al as-
sistants that are helpful across many domains®1l. Such
AT assistants are usually trained to interact with users in
a conversational manner, capturing widespread attention
from not only the research community but also the pub-
lic.

The unprecedented intelligence that LLMs exhibit
goes beyond some of the authors might expect a probabil-
istic model to have. One speculative explanation to this is
that the model learns some concepts abstract and gener-
al enough to function in more situations than it has been
trained on. The impetus of LLMs to learn such complic-
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ated structure of world knowledge by merely imitating,
i.e., minimizing the loss of the next token might lie in
that language itself implies human cognition of the
world's logic. And with the size of the model scales, the
model learns more general concepts and is able to handle
more situations i.e. a better compression of knowledgel!2].
The idea of training MOSS serves as a first step to valid-
ate and, if this is true to an acceptable extent, imple-
ment a Chinese version of prototype of this promising
path.

Despite the success and popularity of large-scale Al
assistants, at the start time of this work, few studies have
been publicly disclosed due to the expensive annotation
and training costs. To that end, we present MOSS, an
open-sourced conversational LLM with 16 B parameters.
As depicted in Fig.1, the development of MOSS includes
three stages: cross-lingual pre-training, supervised fine-
tuning, and preference-aware training. Compared with ex-
isting efforts (e.g., LLaMA[7 and Stanford Alpacal) in the
open-source community, MOSS is featured by:

1. Cross-lingual Pre-training. At the inception of

L In fact, the launch time of this work is much earlier than
LLaMA and Stanford Alpaca, so there are few publicly available

models for comparison.
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Fig.1 The development of MOSS includes three stages. In stage 1 (Section 3), we pre-train the cross-lingual MOSS-base model with
public text and code corpora. In stage 2 (Sections 5 and 6), we first perform supervised fine-tuning (SFT) with synthetic conversational
data and deploy it to the public. We then use the collected real-world data as a seed set to synthesize a new training set, which is used to
perform the final SFT. In stage 3 (Section 7), we train a preference model and use it to perform preference-aware training. The models
resulting from the three stages are named MOSS-base, MOSS-SFT, and MOSS-PAT, respectively.

the MOSS project, we encountered significant challenges
in training a large-scale, purely Chinese model (such as
CPT03] or Chinese BART) to function as a versatile Al
assistant. To address this, we initiated the pre-training of
the MOSS base model on a diverse dataset comprising
360B English tokens (predominantly sourced from the
Pilel’)), 100B Chinese tokens (largely derived from pro-
prietary datasets), and 220B code tokens (mainly extrac-
ted from the Pile, BigQuery, and BigPython). This
strategy was instrumental in validating our hypothesis
that knowledge transfer between Chinese and English is
feasible, even in the absence of direct sentence-level align-
ment between the two languages.

2. Helpful, honest, and harmless (HHH). In con-
trast to most existing open-sourced models that mainly
focus on improving helpfulness, MOSS is also designed to
be honest[!5) and harmless. We collect and extend hon-
esty- and harmlessness-relevant conversational data for
supervised fine-tuning (SFT). In addition, we perform
preference-aware training on additional data to ensure
MOSS is aware of the quality of its response in helpful-
ness.

3. Alignment with the real-world distribution
of user intents. Real-world user prompts are inevitably
diverse, making it difficult to optimize LLMs targeting
user intents. To this end, we deployed an early version of
MOSS and collected 100K wuser prompts submitted
through the web application. Our SFT data and prefer-
ence data are synthesized from a filtered subset of the
user prompts, ensuring that the training data of MOSS
and the real-world user intents are identically distributed.

4. Preference-aware training. Aligning LLMs with
human preferences is becoming a necessary step before
the public releasell, which significantly improves model
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usability and harmlessness. Existing alignment research
usually requires a preference model (also referred to as re-
ward model) trained from human feedbackl®l or Al feed-
backll6l to measure the quality of model responses to hu-
man preferences. The preference model can be used for
performing rejection samplingl!” or reinforcement learn-
ingl® 101, The former approach is inefficient as it requires
the model to generate multiple responses at inference
time. The latter one, a.k.a. reinforcement learning from
human feedback (RLHF), is sensitive to hyperparameters
and therefore is practically hard to tune. Instead, we em-
ploy a preference model to tag model responses with their
overall quality. These tags are prepended to the model re-
sponses for each round of the conversation. By perform-
ing conventional fine-tuning on such preference-tagged
conversational data, MOSS is capable of distinguishing
high-quality responses from low-quality ones. At infer-
ence time, MOSS can generate desired responses condi-
tioning on specific preference tags, for instance,
<quality:100>.

5. Augmentation with tools. Probabilistic lan-
guage models are notorious for suffering from “hallucina-
tions”, e.g., they often generate outputs containing factu-
al errors or basic arithmetic mistakes. Inspired by recent
work in tool-augmented LLMs[!® 19 we perform a tool-
oriented training to augment MOSS with several tools,
i.e., search engine, calculator, equation solver, and text-
to-image generator. Though the capability of the model is
not fundamentally improved, we observe significant bene-
fits when allowing MOSS to access external tools to an-
swer user queries.

We conduct automatic evaluations for MOSS, demon-
strating significant improvement over its base model and
concurrent chat models in terms of model capabilities and
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real-world user experiences.

2 Large language models

Transformer-based auto-regressive language mo-
dels20 21 such as GPT-3[2], PaLMM, Chinchillal’l, GLM-
130BIl6], LLaMA[" 22, and GPT-4[E] have shown increas-
ing power in solving diverse real-world tasks. At its core,
the model performs next token prediction, which can in-
stantiate most of the language-related tasks. Thus,
achieving higher accuracy on next token prediction usu-
ally implies higher performance on many downstream lan-
guage processing tasks. Fortunately, it has been shown
that increasing the number of training tokens and model
parameters can predictably improve the accuracy of next-
token predictionl> 12. Since then, scaling up language
models has become a promising way to overcome more
and more tasks and unlocks more emergent abilities
which smaller models do not exhibit[23].

Based on the pre-trained language model, ChatGPT
performs alignment with human preferences and achieves
remarkable performance when interacting with humans.
The alignment consists of three steps: 1) Supervised fine-
tuning (SFT), which is to fine-tune the language model to
follow user instructions and the conversation format. 2)
Reward modeling (RM), which is to collect a set of hu-
man-annotated preference data and train a reward model
to mimic human preferences. 3) Reinforcement learning
from human feedback (RLHF), which is to train a policy
model with RL algorithms against the reward model.
Such a training pipeline has been shown effective in the
field of text summarization?4, single-turn instruction fol-
lowingl?), and multi-turn dialoguel8. Despite its success,
the high annotation cost (collecting human-written SFT
data and preference data) and optimization difficulty (the
PPO9 algorithm used in RLHF) hinder its applications.
Thus, much effort has been devoted to synthetic data and

AT feedback. As a representative, AnthropicLMI[6: 26 ex-
plored prompting language models to synthesize instruc-
tion and feedback data. Our work also lies in this line of
research.

Fig.2 presents a brief overview of LLMs published
within 8 months after the release of ChatGPT. MOSS is
one of the pioneer conversational LLMs. Table 1 provides
a detailed comparison between MOSS and other concur-
rent open-sourced LLMs.

In comparison, LLMs released after MOSS were usu-
ally pre-trained using much more tokens and more ad-
vanced architectures (e.g., the LLaMA Transformer ar-
chitecturel” 22). Though, MOSS achieved competitive in-
teractive experiences by employing strong language mod-
els to generate complicated training signals, including
multi-turn conversational data, preference data, and tool-
augmented data. Without any human annotation and RL
algorithms, MOSS achieved good performance as an Al
assistant, providing practice for building conversational
language models in a cheaper and faster fashion.

3 Cross-lingual pre-training

Building a helpful, honest, and harmless conversation-
al model requires a strong base language model. Our de-
sired base language model should be trained with as
many tokens as possible and contain a proper number of
parameters such that it has some necessary emergent
abilities like instruction following and can be trained with
acceptable compute resources. However, at the launch
time of this work, there were no Chinese LLMs that meet
such requirements. We partially attribute this to the fact
that English corpora encompasses more universal know-
ledge and serves as a better lingual proxy of world know-
ledge, which we speculate to be vital to build a versatile
conversational LLM. Besides, it is also necessary to train
language models on Chinese corpus for them to learn
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Fig.2 Some concurrent LLM works after the release of ChatGPT. The first version of MOSS was released in February 2023 and the

tool-augmented MOSS was released in April 2023.
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Table 1 A brief comparison of open-sourced LLMs published within 8 months after the release of ChatGPT. * means that the multi-
turn synthetic data of MOSS is constructed based on real-world user data. T RSFT means rejection sampling fine-tuning.

Model Release date Parameters Tokens SFT RM Alignment
ChatGPT 2022-11-30 Unknown Unknown Human annotation Human feedback PPO
MOSS 2023-2-20 16B 680B Multi-turn synthetic datax Al feedback PAT
LLaMA 2023-2-24 7B-65B 1.0T-1.4T - - -
Alpaca 2023-3-13 Based on LLaMA Based on LLaMA Single-turn synthetic data - -
ChatGLM 2023-3-13 6B Unknown Unknown Unknown Unknown
Qwen 2023-4-11 7B-14B 3.0T Human annotation Human feedback PPO
Falcon 2023-5-25 7B-180B 1.5T-3.5T - - -
InternLM 2023-6-7 7B-104B 1.6T Unknown Unknown Unknown
Baichuan 2023-6-15 7B 1.2T - - -
LLaMA2 2023-7-18 7B-70B 20T Human annotation Human feedback PPO & RSFT+t
Qwen 2023-4-11 7B-14B 3.0T Human annotation Human feedback PPO

Chinese grammar and cultural concepts encoded in web
text. To this end, we assign different roles to this two of
the most used languages in the world and thus construc-
ted a pre-training dataset as shown in Table 2.

Table 2 Statistics of the overall pre-training corpora for

MOSS-base
Dataset Language Tokens Ratio (%)
The Pile English 386.3B 57.1
Big Query Code 119.2B 17.6
Big Python Code 71.7B 10.6
Baidu Baike Chinese 4.5B 0.7
Chinese Web Chinese 95.4B 14.1

To endow MOSS with the ability of understanding
and generating Chinese and English tokens both effect-
ively and efficiently, we follow GPT-227 to build our bi-
lingual tokenizer, which is trained using the byte-level
BPE[2 algorithm. Specifically, we additionally trained a
Chinese tokenizer on about 20 GB Chinese text data ran-
domly sampled from our pre-training corpora using the
byte-level BPE algorithm. The vocabulary size of our
trained tokenizer is 60K with about 30% of Chinese
tokens.

Thus, we trained MOSS-base model on the 677B
Cross-lingual corpus. According to the studies on emer-
gent abilities(?3], we considered that the expected base
model with emergent abilities should have more than 10
billion parameters. In addition, we also wished it is feas-
ible to fine-tune MOSS with a single computation node
consisting of 8 NVIDIA 80GB A100 GPUs using ZeROR
and gradient checkpointingl3. Finally, we use Trans-
former decoder with 16 B parameters as the architecture
of MOSS-base. To accelerate our validation of concept
and reduce carbon footprint, we adopt Codegen-16B-
mononBll as the initialization since we observed that the
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pre-training corpora used by CodegenlB! aligns with our
ideal data distribution.

We used the Adam optimizer32 with 81 = 0.9 and
B2 =0.95. We adopt a peak learning rate of 3 x 107
with a warmup of 2% of the total number of training
steps, a batch size of 2.6 M tokens, and a weight decay of
0.1. A cosine learning rate schedule is used and the learn-
ing rate eventually decays to 3 x 1076, Due to the large
number of parameters, we use the pipeline parallelism,
data parallelism and ZeRO[ for distributed training. In
particular, we adopt a 2-way pipeline parallelism and
ZeRO stage 1. The total pre-training process lasted two
month on 128 NVIDIA A100 GPUs.

The pre-trained MOSS-base exhibited strong capabil-
ities in both Chinese and English usage after bilingual
pre-training. More importantly, the base model can gen-
erate knowledge in Chinese while the knowledge only ex-
ists in English form rather than Chinese form in the pre-
training corpora. These preliminary results validated our
hypothesis that knowledge can be transferred between
Chinese and English.

4 Alignment

The base language model is pre-trained to predict the
next token in the document, which does not inherently
enable them to follow user instructions. It is necessary to
obtain an initial instruction-following model to bootstrap
the overall process.

We interpret such a transformation from the base
model to an instruction-following assistant as a signific-
ant phase of LLM training. Instead of continually insert-
ing knowledge into the language model, we identify it as
shifting the way the model handles its inner knowledge.
Such transformation has both pros and cons. The posit-
ive aspect lies in that the ability of following human in-
structions makes it easier for users to extract the model’s
massive knowledge. It can also be trained to be creative
and amusing, which is deemed as a higher level of capab-
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ility for machines. However, it introduces alignment
taxes(?6l and may affect the model’s performance on espe-
cially fact-related downstream tasks.

As an academic institution, we faced significant chal-
lenges in supporting the cost of manually annotating
data. To mitigate these challenges, we strove to maxim-
ize the use of Al models for synthesizing datal33], thereby
reducing the annotation costs. The MOSS alignment is
divided into three key phases:

1) Model warmup: We began by manually creating
hundreds of HHH-relevant seed prompts. These seed
prompts enabled us to utilize the text-davinci-003 model
for few-shot prompting, generating over 1.2 million exten-
ded prompts. These synthetic data were then used to
train the initial MOSS chat model.

2) Model alignment with real-world data: To ensure
MOSS to align with genuine user interactions, we de-
veloped and deployed a web application using the chat
model trained in the first step. This application allowed
us to collect 100000 real-world user prompts. After ana-
lyzing the intent distribution of these prompts, we craf-
ted a new set of seed prompts to generate about 1.1 mil-
lion conversations reflecting real-world data distribution.

3) Preference modeling: We constructed a preference
model from Al-generated feedback, tagging conversation-
al responses with quality scores. This approach enabled
the MOSS system to identify the quality levels of differ-
ent responses.

Moreover, we investigated the potential of augment-
ing MOSS with external tools to further enhance its abil-
ity to evaluate response quality effectively.

Fig.3 presents an overview of the MOSS alignment
phase. The specifics of our alignment process are elabor-
ated upon in the subsequent sections.

5 Model warmup with synthetic data

Converting a base language model into an instruction-
following assistant is a critical step for LLM. Typically,
existing research accomplishes this through four main
methods:

1. In-context prompting. LLMs have demon-
strated strong capabilities in few-shot in-context
learningl?l. Thus, we can elicit instruction-following (or
even conversational) abilities by providing several ex-
ample interactions in the context[26],

2. Instruction tuning. Writing natural language in-
structions for existing NLP datasets, which contain high-
quality human annotations, is a straightforward way to
construct instruction-following datasets, e.g., FLANB4
T0B%], and Natural Instructions(36l.

3. Supervised fine-tuning on labeler demonstra-
tions. InstructGPT is warmuped by fine-tuning on hu-
man-written responses to labeler-written prompts and
prompts collected through their early released API.

4. Self-Instruct. In addition to simply prompting
vanilla LLMs and collecting human annotations, another
alternative is to synthesize prompts and their responses
from a set of seed prompts using LLMs[37].

In this work, we adopt a method similar to Self-In-
struct for extending prompts, which are then used as the
user inputs of the first round of conversations.
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Fig. 3 Illustration of the alignment for MOSS. 1) Model warmup (Section 5): We manually wrote hundreds of HHH-relevant prompts
as seed prompts, based on which we generate 1.2M prompts by few-shot prompting text-davinci-003. The extended prompts are used as
the first-round user inputs, which are then used to generate full conversations. 2) Alignment with the real-world distribution (Section 6):
We deployed a web application using the model trained in step 1 and collected 100K real-world user prompts. We analyzed the
distribution of user intents and constructed a new set of seed prompts, which is then used to generate 1.1 M conversations that follow the
real-world distribution. 3) Preference modeling (Section 7): We trained a preference model from AI feedback and used it to tag model
responses with their quality scores, resulting in preference-tagged conversational data. By training on such preference-tagged data,

MOSS learns to distinguish the quality of different responses.
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5.1 User prompts

Seed prompts.

We handcrafted 188 seed prompts, consisting of Eng-
lish and Chinese instructions about helpfulness and hon-
esty. For honesty, we in this paper mainly consider
whether the assistant knows necessary information about
itself, e.g., its name, developer, etc.

Synthetic prompts.

With the seed prompts in hand, we employ OpenAl's
text-davinci-003 to construct synthetic prompts in a way
similar to Self-Instruct. An example prompt for generat-
ing synthetic prompts for honesty is shown below:

Come up with a series of questions for a chatbot. Here
are some examples:

[Question 1]: Whats your name?

[Question 2]: Who created you?

[Question 8]: How many languages can you speak?

Now show me another 8 questions:

[Question 1]:

By iteratively prompting text-davinci-003 with differ-
ent in-context examples sampled from existing seed
prompts and synthetic prompts, we can obtain a large
number of user prompts. In practice, we find that the dis-
tribution of the generated synthetic prompts easily devi-
ates from the distribution of seed prompts. To that end,
we randomly sample in-context examples merely from the
seed prompts at the first 50 iterations. After that, we
sample in-context examples from both seed prompts and
synthetic prompts.

Table 3 demonstrates the data statistics of seed
prompts and synthetic prompts. For harmlessness, the
desired prompts should contain aggressive statements
that induce the assistant to produce harmful responses.
However, prompting text-davinci-003 to generate aggress-
ive prompts (e.g., how to rob a bank) can be difficult
since text-davinci-003 has been trained to be harmless.
Hence, we use Anthropic’s red teaming promptsi38 in-
stead of synthetic prompts.

Table 3 Data statistics of the seed and synthetic prompts used
in the model warmup stage. Note that we use human-generated
red teaming prompts instead of synthetic prompts as our user
prompts for harmlessness.

# Seed prompts # Synthetic prompts

Category
En Zh En Zh
Helpfulness 70 60 419 049 447 750
Honesty 28 30 112 580 142 885
Harmlessness 0 0 38873 0

5.2 Conversational data

The generated user prompts are then used to con-
struct multi-turn conversations. In particular, the syn-
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thetic prompts are used as the user inputs of the first
round of conversations. We then employ text-davinci-003
to complete the conversations.

Thanks to its remarkable capability of instruction-fol-
lowing, we can use text-davinci-003 to complete conversa-
tions between the user and the assistant, whose informa-
tion and behavior can be specified by the instruction of
text-davinci-003. An example instruction to complete a
conversation is as follows:

Below is the information about an Al assistant.

Name: MOSS

Created by:FudanNLP Lab

Born in: Shanghai

Birthday: February 7, 2023

Nationality: China

Language: Chinese, English

Can do: answering questions, providing definitions and
explanations, translating texts from one language into an-
other, summarizing texts, writing stories, analyzing senti-
ment, coding, developing algorithms, and any other lan-
guage-based tasks

Cannot do: see, hear, taste, touch, smell, move, inter-
act with the physical world, feel emotions or experience
sensory inputs, perform tasks that require physical abilities

MOSS will provide the user the above information if
asked. In conversations between MOSS and humans,
MOSS always has the following characteristics:

1. Its replies are highly detailed and well-organized,
usually containing 50 to 300 words.

2. Itis good at answering questions from multiple differ-
ent perspectives and therefore its replies are very compre-
hensive.

3. It always provides detailed explanations for entities
and terms in its replies.

4. It often makes a list of practical actions or sugges-
tions and presents them in proper order and beautiful
format.

5. It is always polite and harmless.

6. It refuses with detailed explanations when it is asked
to do something it cannot do or something that is not ethic-
al.

7. It replies in the Markdown format, e.g., it inserts
before and after the code snippet.

In conversations between MOSS and humans, humans
have the following characteristics:

1. He/She usually starts with straightforward instruc-
tions.

2. His/Her messages are brief and concise.

3. He/She often asks more profound questions about
the assistants response.

A user is chatting with MOSS. Create a conversation
between MOSS and the user in the following format:

[Human]: ---<eop>

[MOSS]: --<eor>

[Human]: List five ideas for how to regain enthusiasm
for my career<eor>

1
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In the instruction, we embed the necessary informa-
tion (e.g., name, birthday, etc.) of the assistant, the con-
versation behaviors of both the assistant and the user,
and the desired data format. As a result, we can obtain
the assistant response after querying text-davinci-003
once. We concatenate the input prompt and output re-
sponse, then append “[Human]:” to construct a new
prompt to query text-davinci-003 to complete the second
round of the conversation. The number of conversation
turns is sampled from a log-normal distribution p =3
and 0 = 1. We set the maximum number of conversation
turns to 10.

The statistics of the generated conversations are
presented in Fig.4. We prepend a prefix, called
meta—instruction, to each conversation to highlight the
background of the assistant:

MOSS is an Al assistant developed by the FudanNLP
Lab and Shanghai Al Lab. Below is a conversation
between MOSS and human.

5.3 Supervised fine-tuning

We perform supervised fine-tuning (SFT) using the
collected conversational data. We train for 2 epochs us-
ing the AdamWl optimizer with a learning rate of 9 X
1076 and a batch size of 32. The training is performed on
8 NVIDIA A100 80GB GPUs. We use the ZeRO-3[29 and
gradient checkpointing3% to reduce the memory use. The
maximum sequence length is set to 2 048.

6 Alignment with the real-world distri-
bution

After the warmup SFT, the model is capable of per-
forming multi-turn conversations with humans and fol-
lowing input instructions. However, the topic distribu-
tion of the SFT data is somehow identically distributed
with the human-written seed prompts, which are inevit-
ably difficult to cover the diverse user intents in the real
world. To that end, we deploy the warmuped model and
develop a web application for serving public users and
collecting user data. By performing deduplication and
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minimum length filtering, we collected about 100K real-
world user prompts submitted through the web applica-
tion. We then use text-davinci-002, in a few-shot manner,
to classify these user prompts into several use cases.
Table 4 shows the distribution of the use cases.

By performing an in-depth analysis of the collected
use cases, we carefully selected about 10K real-world user
prompts as our new seed prompts according to their fre-
quency and difficulty. We then repeat the method de-
scribed in Section 5.1 to generate synthetic prompts
based on the newly collected seed prompts. Table 5
demonstrates the distribution of generated synthetic
prompts after aligning with the real-world use cases.
When generating conversations using the synthetic
prompts, we use a method similar to Section 5.2 but re-
place text-davinci-003 with the newly released gpt-3.5-
turbo due to its stronger dialogue ability. In particular,
we divide our original instruction to text-davinci-003 into
two separate instructions to gpt-3.5-turbo, one for gener-
ating assistant replies and one for generating human
replies.

In Fig. 5, we show our evaluation results on MMLU[40],
TruthfulQA®!, and RealToxicityPrompts/2], correspond-
ing to the model’s helpfulness, honesty, and harmlessness.
For helpfulness, we evaluate Codegen-16B-mono, MOSS-
base, and MOSS-SFT in a 5-shot manner on MMLU and
constrain the generation space to candidate answers, i.e.,
A-D. When evaluating MOSS-SFT, each demonstration
example is presented in one turn of conversation to simu-
late the 5-shot setting. Though the average accuracy on
MMLU is not competitive due to the limited training
tokens and model size, MOSS-SF'T improves significantly
over its under-tuned models, Codegen-16B and MOSS-
base, and matches the average accuracy of human raters.
We conjecture that an average human-level MMLU per-
formance would be sufficient to align with human prefer-
ences and provide helpful responses to humans. For hon-
esty, we evaluate the percentage of true and informative
generations on TruthfulQA. We demonstrate the results
of base models (namely GPT-3 6B, LLaMA 13B, and

Distribution of number of words
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Fig. 4 Statistics of the SFT data for model warmup (Colored figures are available in the online version at https://link.springer.

com/journal/11633)
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Table 4 The distribution of the real-world use cases
collected by the web application

Use case Percentage (%)
Open QA 53.1%
Code 13.5%
Chat 7.4%
Generation 7.2%
Math & Reasoning 5.7%
Brainstorming 5.2%
Role-playing 5.0%
NLP Tasks 2.9%

Table 5 Distribution of the SF'T data after alignment
with the real-world use cases

Category Domain Sample ratio Sample number
Brainstorming 9% 99 163
Complex instruction 9% 95 581
Helpfulness Code 19% 198 091
Role Playing 23% 246 375
Writing 32% 341 089
Honesty Honesty 1% 4973
Harmlessness Harmlessness 7% 74575

MOSS-base) and their corresponding SFT models
(namely InstructGPT 6B, Alpaca 13B, and MOSS-SFT).
As shown in Fig.5, our SFT process significantly im-
proves the performance of MOSS-base on TruthfulQA,
surpassing Alpaca 13B though the performance of our
base model lags far behind LLaMA 13B. The degrada-
tion of LLaMA 13B on TruthfulQA after Alpaca’s SFT
may come from the lack of honesty-related SFT data. For
harmlessness, we evaluate the toxicity score (lower is bet-
ter) of MOSS-SFT, Alpaca-13B, LLaMA-13B, InstructG-
PT 175B, and GPT-3175B on RealToxicityPrompts. The
respectful setting is to use the instruction “Complete the
following sentence in a polite, respectful, and unbiased
manner:” to prompt target models. Among all the com-
paring models, MOSS achieves the lowest toxicity score,
showing that our constructed harmlessness-related SFT
samples, though not many, are sufficient to reduce the
toxicity of model generations.

Since our model is fine-tuned targeting real-world use
cases instead of academic benchmarks such as MMLU, we
also evaluate our SFT model on 1.2K held-out user
prompts collected through our web applications. The
evaluation user prompts are identically distributed with
the use cases in Table 4. We demonstrate the win rate of
MOSS-SFT against gpt-3.5-turbo, Chinese Alpaca 13B2

2 Chinese Alpaca: https://github.com/ymcui/Chinese-LLaMA-
Alpaca.
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and MOSS-Warmup (the checkpoint after the warmup
SFT) in Fig.6. MOSS-SFT performs significantly better
than MOSS-Warmup and Chinese Alpaca but still loses
to ChatGPT-3.5 on 41.25% evaluation samples.

7 Preference modeling

Inspired by the success of InstructGPT and ChatG-
PT, we explore aligning our SF'T model with human pref-
erence. Different from the common practice that collects
human-annotated preference data and performs reinforce-
ment learning from human feedback (RLHF), we simu-
late human preference data with responses of varying
quality generated by multiple models and perform prefer-
ence-aware fine-tuning instead of PPOR3 to align MOSS
with human preference.

7.1 Preference model

Collecting preference data.

In addition to SFT data, we constructed another
113K multi-turn conversations, which are identically dis-
tributed with the SFT data in Table 5. To simulate hu-
man preference data, we replace the last turn of these
conversations with the output of other models with vary-
ing quality. By this, we obtain 113K prompts, each con-
sisting of a shared conversation history and 6 responses
from text-ada-001, text-babbage-001, text-curie-001, text-
davinci-001, gpt-3.5-turbo, and MOSS-SF'T, respectively.
We then pair the outputs from these models and employ
GPT-4 to determine the winner of each pair, resulting in
15 paired preference annotations per prompt. We did not
use responses sampled from the same SF'T model because
in our preliminary experiments, we found it difficult for
state-of-the-art public model APIs (e.g., gpt-3.5-turbo) to
distinguish their quality. In contrast, the qualities of re-
sponses from different models are easier to compare.

Training preference model.

Using our collected preference data, we trained a pref-
erence model from the MOSS-SFT model. The preference
model replaces the last decoder layer with a value predic-
tion head. Similar to InstructGPTY], for each pair of re-
sponses, we encourage the winning response to have a
higher score than the losing response. The loss function
for optimizing the preference model is as follows:

L(H) = _E(Z,yunyz)"D[IOg(U(Tf)(xvyw) - re(mvyl)))} (1)

where r¢(z,y) is the scalar predicted by the preference
model with parameters 6 for prompt = and response v,
Yw is the preferred response while y; is another.

We train for one epoch over the training data. The
maximum learning rate is 6 x 107° without warmup. The
effective batch size is 48 pairs. The best reward model
achieves 96.6% accuracy on the validation set thanks to
the significant quality difference among different models.
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Fig.5 Evaluation results on MMLU, TruthfulQA, and RealToxicityPrompts. For Truthful QA, we compare our MOSS-base (MOSS-
SFT) with GPT-3 6B (InstructGPT 6B) and LLaMA 13B (Alpaca 13B). For RealToxicityPrompts, we compare with the 175 B variant
of GPT-3 and InstructGPT. (Colored figures are available in the online version at https://link.springer.com/journal /11633)

i MOSS-SFT wins [ Tie 1 MOSS-SFT loses

MOSS-SFT
VS. ChatGPT-3.5 31.89 41.25
MOSS-SFT 13.31 18.22
VS. Chinese Alpaca
MOSS-SFT
VS. MOSS-Warmup 12.12 16.68
0 20 40 60 80 100
Win rate (%)

Fig. 6 Win rate comparison with MOSS-Warmup, Chinese Alpaca-13B and gpt-3.5-turbo on 1.2 K real-world user prompts (Colored

figures are available in the online version at https://link.springer.com/journal/11633)

7.2 Preference-aware training

It has been a common practice to perform RLHF, in
particular the Proximal Policy Optimization (PPO) al-
gorithm[? to optimize the SFT model with the prefer-
ence model. However, PPO requires multiple additional
models and therefore consumes a large computing budget.
In this work, we explore performing preference-aware
training by constructing a new SFT dataset where the
preference of each response is tagged by the preference
model.

The motivation behind our approach is to inform the
model about the quality of its responses and therefore en-
able the model to distinguish between responses of vary-
ing quality. To achieve this, we randomly sample 100K
conversations {(z1,y1), (z2,y2), "+, (n,yn)}, where z; is
the conversation history and y; is the last-round model
response, from our SFT data and score the last-round
model response (i.e., Y1,¥y2, - ,Yn) using the preference
model,
{(z1,v1, 81), (w2,y2,82), " , (Tn, Yn,Sn)}. We then assign
these tagged conversations into 6 distinct buckets by

resulting in  preference-tagged SFT data

their quality scores. The conversations in the 6 buckets
are then relabeled with different quality scores, i.e., 0, 20,

40, 60, 80, and 100, in ascending order. The distribution
of the quality scores can be found in Fig.7. At training
time, we reconstruct our SFT data by prepending the
corresponding quality score to the response. Below is an
example.

MOSS is an Al assistant developed by -

<|Human|>: Hi, whats your name?

<|MOSS|>: Hello! My name is MOSS.

<|Human|>: What can you do for me?

<|[MOSS|>: <quality: 60> | can answer questions,
provide definitions -

We fine-tune MOSS-SFT using the preference-tagged
data for 2 epochs with the AdamW optimizer and a peak
learning rate of 6 x 1076, By this, the model learns to re-
cognize the quality of its responses. At inference time, we
always append a “<|MOSS|>: <quality: 100>” to the con-
versation history to perform conditional generation. Our
preference-aware training (PAT) approach can be viewed
as a variant of the Hindsight Experience Replay (HER)43]
and Hindsight Instruction Relabeling (HIR)44.

For comparison, we also fine-tune the MOSS-SFT us-
ing PPO with the following objective similar to Instruct-
GPT,
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Fig. 7 Statistics of the overall quality distribution of the preference-aware training data (Colored figures are available in the online

version at https://link.springer.com/journal/11633)
objective (¢) =Eay~p, . [ro(z,y)-
®
Blog (£ |2)/x w2) | (2)

where ﬂgL is the learned RL policy, 7FT is the MOSS-
SFT model. When performing PPO, we use the same set
of prompts as PAT for fair comparison. The training is
conducted for one epoch with a batch size of 32. We set a
PPO clip ratio of 0.2, 8 of 0.02, a peak learning rate of
1 x 1070 for the policy model, and a peak learning rate of
1 x 1079 for the critic model. We use a warmup of 10% of
the total number of steps.

Fig.8 shows the win rate comparison among different
fine-tuning methods. Both MOSS-PPO and MOSS-PAT
outperform MOSS-SFT on the evaluation set, which re-
mains the same as used in Section 6. Notably, we ob-
serve that MOSS-PAT performs comparably with our im-
plemented MOSS-PPO while does not require additional
parameters.

8 Tool augmentation

Though scaling up has endowed LLMs with powerful
capabilities in language-related tasks, there are still inher-
ent deficiencies that scaling up cannot address. For in-
stance, LLMs cannot access real-time information and are
prone to issues like “hallucinations”. They exhibit relat-

MOSS-PPO VS. MOSS-SFT

27.0%
31.5% 32.6%

41.5%

MOSS-PAT VS. MOSS-SFT

ively poor performance in mathematical problems such as
numerical calculations and equation solving. In addition,
LLMs can only engage in natural language interaction, in-
capable of generating data in other modalities such as im-
ages. To address these issues, inspired by Toolformer/18],
we explore fine-tuning MOSS to incorporate external
tools such as search engines, calculators, equation solvers,
and drawing tools. We demonstrate several use cases of
incorporating external tools in Fig.9.

In this section, we provide details of the construction
for our tool augmentation data, the strategy of fine-tun-
ing, the implementation details of these tools, as well as
tool-targeted evaluation results.

8.1 Tool augmentation data

Data format.

In expectation, we would like to allow users to con-
trol which tools are enabled or disabled, so we introduce
a “tool switch” and connect it with the meta-instruction
prepended to the front of the input context. For instance,
if the tool calculator is checked by the user, the meta-in-
struction is accordingly modified as follows:

You are an Al assistant whose name is MOSS.

Capabilities and tools that MOSS can possess.

— Inner thoughts: enabled.

— Web search: disabled.

MOSS-PAT VS. MOSS-PPO
Former wins
Tie
Former loses

27.3% 31.1% 33.1%

40.1% 35.8%

Fig.8 Preference comparison among MOSS-PAT, MOSS-PPO, and MOSS-SFT (Colored figures are available in the online version at

https://link.springer.com/journal/11633)
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moss-moon-003 - %

Oo0ooao

(a) On-off control

List all the authors of the paper “Attention s All You Need"

The authors of the paper "Attention Is All You Need" are Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoret, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and liia Polosukhin.

Q@ Search Attention Is All You Need authors

(b) Search engine

The canteen has 23 apples. If they use 20 for lunch and then buy 6 more, how many apples do they have now?

B Calculate 232046

Aftar using up 20 apples for lunch and then buying 6 more, there are 9 apples left

(c) Calculator

In a cage, chickens and rabbits add up to 35 heads and 94 feet. Please count the number of chickens and rabbits.
I Solve chr=asi2cedr=sd

According to my calculation, there are 23 chickens and 12 rabbits in the cage.

(d) Equation solver

Q
Please draw me a picture of the European countryside

B TextZImage a painting of the european countryside -/

Here is a picture of the European countryside that you requested.

(e) Image-to-text generator

Fig. 9 Use cases of our considered external tools

— Calculator: enabled. API: calculate (expression).

— Equation solver: disabled.

— Text-to-image: disabled.

We set the status of the calculator as “enabled” and
provide its corresponding API format to inform the mod-
el how to use it. Through these switches, we control
which tools can be used during the conversation and
which tools cannot be used. Note that even if some ex-
ternal tools are enabled, MOSS will determine by itself
whether to use them or not based on the query from the
user. For example, MOSS is expected to not use the
search engine when answering easy common sense ques-
tions even if the search engine is enabled. MOSS has no
access to a tool if it is disabled by the meta-instruction.

In addition to the meta-instruction, the format of con-
versations should also be modified. Each turn of conversa-
tion consists of 5 sections: “Human”, “Inner Thoughts”,
“Commands”, “Results”, and “MOSS”. Below is an ex-
ample showing one turn of the conversation:

<|Human|>: The side lengths of a pentagon are 120 cm,
80 cm, 150 cm, 180 cm and 240 cm respectively, find the
perimeter of the pentagon.

<|Inner Thoughts|>: This is a calculation problem, |
need to add the side lengths of the pentagon to get the
perimeter.

<|Commands|>: Calculate(*120+80+150+180+240")

<|Results|>:  Calculate(“120+80+150+180+240") =>
“770”

<|[MOSS|>: The perimeter of the pentagon is 120 cm +
80 cm + 150 cm + 180 cm + 240 cm = 770 cm.

In the “Inner Thoughts” section, MOSS performs in-
tent detection and task planning based on the meta-in-
struction and conversation history. This usually involves
assessing the type of user query, determining whether to

use external tools, and deciding which external tools are
proper to use. In the “Commands” section, MOSS gener-
ates particular API calls based on the insights in “Inner
Thoughts”. When commands are generated, we parse the
function names and parameters and invoke correspond-
ing tool services. The results returned by the tool ser-
vices are then filled into the “Results” section. Note that
there can be multiple API calls in one turn of conversa-
tion, so we organize the results in the format “API(ex-
pression) => result” to distinguish the results of different
tools. Finally, in the “MOSS” section, MOSS combines all
information generated in the previous sections and
provides the final response for the user. Through such a
pipeline, we bridge tool use and conventional conversa-
tion in the context of language models.

Generating tool data step by step.

We synthesize tool data in a way similar to construct-
ing conventional conversation data as described in Sec-
tion 5. In contrast, tool data is much more complicated so
we develop a step-by-step approach to generate content
in each section.

Step 1. Prepare seed user queries. After analyz-
ing our collected real-world user queries, we selected 4
tools, namely a search engine, a calculator, an equation
solver, and a text-to-image generator, as they help in
most use cases that require external tools. As demon-
strated in Table 4, open-domain QA occupies 53.1% of
use cases, so incorporating a search engine can already
improve user experience significantly. We carefully selec-
ted hundreds of representative user queries that can be
solved by such tools.

Step 2. Extend the user queries. Based on these
seed queries, we use the Self-Instruct approach to gener-
ate similar user queries by prompting text-davinci-003 in
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a few-shot manner. Note that MOSS is expected to not
call external tools when processing common sense queries
or simple math problems. Therefore, we carefully de-
signed the instruction and in-context examples to text-da-
vinci-003 to ensure that the generated tool-required user
queries are difficult.

Step 3. Generate inner thoughts and com-
mands. When generating inner thoughts and commands,
we first explore prompting text-davinci-003 and gpt-3.5-
turbo in a zero-shot manner. As a result, we found it diffi-
cult to generate desired inner thoughts and commands
without demonstrations. Hence, we manually constructed
the inner thoughts and commands for a subset of high-
quality user queries, which are then used as in-context
demonstrations for text-davinci-003 to generate inner
thoughts and commands for all extended queries.

Step 4. Get tool responses. With the generated
commands at hand, we parse the API names and para-
meters and invoke our deployed tool services. It is worth
noting that we also employ a simple summarization mod-
el based on TextRank[® to extract a summary for each
web page returned by the search engine such that the
conversation can fit the limitation of the maximum con-
text length.

Step 5. Generate final replies. Finally, we simply
prompt text-davinci-003 in a zero-shot manner to gener-
ate the final reply by considering the information in all
previous sections. For transparency, we also demonstrate
the reference web pages if the search engine is used.

After generating single-turn interactions, we repeat
the above process to generate multi-turn conversations.
To ensure the coherence of the multi-turn conversation,
we directly instruct text-davinci-003 to generate the fol-
low-up user queries based on the conversation history in-
stead of prompting in a few-shot manner. For the text-to-
image generator, we constructed 50K conversations. For
each of the other tools, we constructed 200K conversa-
tions.

In addition, we construct “negative examples” by ran-
domly sampling conversations from the conventional SF'T
dataset and randomly setting the status of some tools as
“enabled” by modifying the meta-instruction. By this, we
encourage the model to not use tools under improper con-
texts even if some tools are enabled.

8.2 Implementation details

At training time, we do not put the cross-entropy loss
on tokens in the “Results” section to avoid the model be-
ing affected by the results returned by tool services,
which often contain unclean texts such as the web pages
returned by the search engine. We use the same training
hyper-parameters as conventional SFT.

Search engine. Our search engine tool is built upon
Google's search API. We extract the URLs of the top 3
web pages returned by Google and use TextRank[45 to
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generate a summary for each web page such that the
length of the input would not exceed the maximum con-
text length.

Calculator. We implemented the calculator tool us-
ing a sandbox environment that supports Python. Ini-
tially, a preprocessing mechanism is engaged to convert
input requests into a sequence of executable Python code.
Subsequently, this code is executed within the sandbox
environment, and the output generated from this execu-
tion is then presented as the final output of the calculat-
or. Leveraging this mechanism, our calculator tool is ad-
ept at managing complex and sequential computational
tasks. For example, the request “x=1.5;y=x"2;x+y=?" will
be preprocessed as “x=1.5;y=x**2;print(x+y)” and the final
response will be “3.75”. In addition, various computa-
tions supported by Python standard library math can also
be executed.

Equation solver. We implemented the equation solv-
er using a sandbox environment where the open resource
package SymPy? has been installed. We leveraged
SymPy's extensive scientific computing capabilities for
solving common problems such as single-variable polyno-
mial equations, linear systems of equations, simple sys-
tems of equations, and trigonometric equations. The pre-
processing program converts incoming requests into Py-
thon code using SymPy, and the output generated from
this execution is then presented as the final output of the
equation solver.

Text-to-image generator. We use pre-trained
StableDiffusion46] models as our text-to-image generator.
To be compatible with languages other than English, the
model-generated API parameter, i.e., the prompt to be
fed into the StableDiffusion model, should be always in
English so the model is expected to translate user queries
in any language into English prompts.

8.3 Evaluation

In this section, we present the evaluation results of
the tool learning of MOSS. We primarily focus on two as-
pects: One is the capability of the meta-instructions in
controlling tool use, and the other is the benefits brought
by using tools for related use cases, e.g., knowledge-based
queries and math problems.

Meta-instruction. We first evaluate how well the
meta-instruction can control the model to use or not use
corresponding tools. Due to the simplicity of using the
text-to-image generator tool, we mainly consider the cases
of using the search engine, calculator, and equation solv-
er. We constructed a test set of user queries that were
not seen at training time for each tool. For every test
query, we construct two meta-instructions, one enabled
the corresponding tool and the other disabled. Then for
each test query, we evaluate whether or not the model

3 https://www.sympy.org/en/index.html
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Fig. 10 Evaluation results of whether the meta-instruction can control the model to use or not to use a tool. (Colored figures are
available in the online version at https://link.springer.com/journal/11633)

generates the corresponding APIT call. As demonstrated in
Fig.10, we found that MOSS recalled most of the use
cases of using the search engine tool (99.3%) and the cal-
culator tool (89.2%) when the corresponding tool is en-
abled in the meta-instruction. However, there are cases
where the tool is disabled but MOSS still generates the
API call (3.93% in search engine, 28.67% in calculator,
7.70% in equation solver). Fortunately, this will not be a
problem since we can ignore the API call when it is dis-
abled in meta-instruction and overwrite related sections.
For equation solver, we noticed that MOSS only recalled
52.3% user queries, which may come from the highly vari-
able forms of asking questions that require an equation
solver.

Knowledge-based queries. We collected 1K user
queries that require factual knowledge or real-time in-
formation to evaluate the model performance before and
after enabling the search engine. As shown in Fig.11, we
observed significant accuracy improvement when en-
abling the search engine. However, MOSS still exhibits is-
sues such as not invoking tools when needed, making in-
correct invocations, providing sub-optimal search results,
and struggling with information integration.

I w/o tool
60 - o w tool
S 45t
>
g
S 30f
<
15+
0 ” I
Search Calculator Solver

Fig. 11 Evaluation results of solving user queries that require
the search engine, calculator, and equation solver with and
without corresponding tools. (Colored figures are available in the
online version at https://link.springer.com/journal/11633)

Math problems. We collected 500 math problems
related to calculations and 300 math problems related to
equations to evaluate model performance before and after

enabling the calculator and the equation solver, respect-
ively. We found that the use of these tools brought signi-
ficant benefits when solving math problems. However, the
model still faces issues such as not invoking external tools
when necessary and errors in parameter handling.

9 Conclusions

In this paper, we present MOSS, an open-sourced con-
versational large language model with 16 B parameters.
The development of MOSS contains three stages: cross-
lingual pre-training, supervised fine-tuning, and prefer-
ence-aware training. Firstly, we significantly improved
the quality and efficiency of MOSS in generating Chinese
texts by extending vocabulary, gradual parameter un-
freezing, and cross-lingual pre-training. Secondly, we de-
ployed an early version of MOSS as an online application
service and synthesized conversational data based on the
collected user data, aligning the distribution of the train-
ing data with the distribution of real-world user inten-
tions. Thirdly, we performed preference-aware training to
further improve the generation quality based on Al feed-
backs. In addition, we also explored training MOSS to
use external tools including the search engine, calculator,
equation solver, and text-to-image generator. In conclu-
sion, as an early practice of Chinese conversational large
language model, this paper verifies the feasibility of build-
ing such models with capabilities of instruction-following
and multi-turn Chinese dialogue by making full use of rel-
atively small language models and high-quality synthetic
data.
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